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Two-scale relations in one-dimensional crystals and 
wavelets 

K Kanedat and T Odagaki 
Depanment of Physics, Kyushu University, Fukuob 812-81. Japan 

Received 24 February 1995 

Abstract We present a complete analysis of scale transformation of the Bloch functions and 
the Wannier functions in one-dimensional lattices. when a cell twice as large as the primitive cell 
is taken as the periodic  unit.^ We obtain the Wannier functions for a free electron imposing an 
artificial periodicity and show that the Wannier functions satisfy the propaties of the wavelets 
and wavelet packets of the multi-resolution analysis. We show that the coefficients appearing in 
the scale rransformation of the Wannier functions for a free electron also serie as the expansion 
coefiicients for the scale transformation of the Bloch functions and the Wannier functions in 
general one-dimensional lattices. Finally, we q u e  the importance of the translational sy””euy 
based an the minimal primitive cell in determining the Wannier functions. 

1. Introduction 

It is well known that one-electron states in periodic crystals can be completely described by 
Bloch’s theorem. Because of the translational symmetry, the Hamiltonian of a periodic 
system commutes with translation operators generated by the Bravais lattice and the 
eigenfunctions, Bloch functions, of the Hamiltonian can be represented by the product 
of a plane wave whose wavevector lies in the first Brillouin zone and a periodic function 
of the Bravais lattice [I]. 

The period of a crystal is usually~ taken as the shortest of any possible peribd. However, 
we can always view a periodic system with period a as a system with period 2a or any 
integer multipks of a. We call this transformation ‘inflation’ or renormalization of the unit 
cell. The idation transformation can be considered as a kind of symmetry operation of the 
periodic system. It is known that the reciprocal lattice does not essentially change under the 
inflation if one takes account of the structure factor. In fact, the scattering function Z(a)(k) 
for a one-dimensional lattice with period a is given by ~ ’ 

If we view the same system as possessing period 2, the scattering function is expressed 
with the structure factor 1 + dka as 
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Flgure 1. Electronic enexgy levels 
in a one-dimensional lattice vmus 
wavevector k are shown schematically in 
an extended-zone scheme, The Bragg 
planes corresponding to lattice CONM 
a are denoted by broken lines, and the 
Bragg planes corresponding to lattice 
constant 20 are denoted by dotted lines. 
Note there are no band gaps at the 
fictitious Blagg planes. 

Obviously at k = (21 + l ) z / a ,  where is I an integer, the structure factor vanishes, and 
the scattering function I@')(@ becomes identical to I")(k). It is also clear that when the 
unit cell is inflated, the energy bands are folded at the new Bragg planes though band 
gaps do not appear at the new Bragg planes because of the same reason as above (see 
figure 1). However, it is not trivial how the Bloch functions and the Wannier functions are 
transformed under the inflation. In this paper, we give a complete analysis to this question 
for one-dimensional periodic lattices. In particular, we show that the Wannier functions 
for a free electron in one dimension are the wavelets and wavelet packets known in the 
multi-resolution analysis. 

Consider an electron in a one-dimensional periodic lattice, whose Hamiltonian is given 
by 

where M is the mass of the electron and the periodic potential energy U ( x )  satisfies 

U ( x  f a )  = U ( x ) .  

If we introduce a scaled coordinate 
- 2  

a 
= - 

then the scaled Hamiltonian is given by 

(1.3) 

where 
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which has a period of unit length. Suppose we consider the period of this system to be 2a, 
then the scaled Hamiltonian (scaled as .?e) = x / 2 a )  is 

where the scaled potential energy is given by 

which also has a period of unit length. If o ( ' ) ( x )  = u( ' ) (x)  holds, then the inflation 
is a symmetry operation of the Hamiltonian and we expect a certain symmetry in the 
Blocb functions. When G ( l ) ( x )  # oC2)(x), which holds in most crysds,  the inflation 
transformation is not a symmetry operation to the Hamiltonian. However,  we^ cad still 
find definite relations among differenfly scaled eigenfunctions. 

Throughout this paper we focus on inflation by a factor 2, that is, scaling by a factor 
2 which we call a 'two-scale by factor 2' or simply 'two-scale'. It should be emphasized 
that a similar discussion holds for any other integer scaling factor. 

 in section 2, we briefly review the Bloch representation of~the eigenfunctions for a 
one- dimensional^ periodic system and Wannier functions. In section 3, we discuss the case 
where the relation 

fp(x) ( 1.6) 
holds and the scaling transformation is a~symmetry operation. This symmetry exists 
when the potential energy is identically zero, namely, for a free electron. We can obtain 
Wannier functions directly (Wannier functions of a !?ee electron), and we derive the two- 
scale relations and decomposition relations among differently scaled Wannier functions by 
direct calculation of their inner product. We show that Wannier functions of the zeroth 
and first bands fonn the scaling functions and wavelets, respectively, and we explain the 
correspondence between these two-scale relations and the wavelet analysis. In section 4, we 
discuss two-scale relations when the potential energy is not identically zero. We show that 
the two-scale relations of the Bloch functions found for a free electron can also be extended 
to this case, though the Wannier functions cannot be related to wavelets. In section 5, we 
apply the present analysis to a model system consisting of infinite potential barriers placed 
periodically. We argue the importance of the translational symmetry of the whole system 
in dealing with the inflation transformation. We give a brief summary and comments in 
section 6. 

2. Bloch's theorem and Wannier functions 

In the following discussion, we denote the set of integers by 

Z= { ..., - l , O ,  1 ,... 1 Z+ = (0,1,2,3, . . . I  
and the space of measurable functions f by L2(R), where f is defined on the real line R, 
which satisfies 

(f(.). f(.)) < 

with the inner product 
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We may drop (.) in the notation when it is apparent 

is 
In one-dimensional crystals with lattice constant a, the stationary Schrodinger equation 

(2.1) ( 0 )  (4 ~ ( x ;  a)+,%) = En.k@n.k(X) 

xn 6 lkla e ic(n + 1) 

and its eigenfunction @,$(x), the Bloch function, is written as the product of a plane wave 
and a periodic function of the lattice, 

n E Z, 

U::(. +a) = u::(x). (2.2) ikr (4 t~t;(x) = e  u. .~(x)  

Here n is the band index and we used the extended zone scheme, where the energy bands 
are represented as a single-valued function of k.  This choice of the scheme will make it 
easier to find the correspondence between crystals and systems without the translational 
symmetry of the Bravais lattice. The Bloch functions satisfy the normalization condition 

(@$.i,, @:l) = &,.S(k' - k). (2.3) 
The Bloch function can be written as a linear combination of Wannier functions [l]; 

where the Wannier function t$,$')(x) Of the nth band is localized at x = 0. Conversely, 
the Wannier function of the nth band can be represented as the superposition of the Bloch 
functions (the inversion formula of Fourier coefficients); 

where the integration range is the nth Brillouin zone. Note that the integration can be 
performed for any Brillouin zone, since the Bloch function is a periodic function in k- 
space. The prefactor 

(2.6) 

Since the complete set of Bloch functions is written as a unitary transformation of the 
Wannier functions, the Wannier functions @I,$')(. - am) for n E Z+ and m E Z form an 
orthonormal complete set. 

in (2.5) ensures the normalization of the Wannier function 

(t$g)(. -ami i@( .  - ahz)) = ~ n ~ , n ~ ~ m ~ , i ~ .  

3. Wannier functions for a free electron and wavelets 

We consider a free electron in one dimension whose Hamiltonian is 

We impose an artificial periodicity of period a. Since this Hamiltonian satisfies ( Id) ,  
the scaling transformation is a symmetry operation for this system. The solution of the 
one-electron Schrodmger equation is given by 

(3.2) 

(3.3) 
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Figure 2. The Wannier functions 
around the origin of the fin1 two 
energy bands for a free electron 
in one dimension. The Wmier  
functions of rhe higher bands behave 

I 

-4a -2a 0 2a 4a 
X similarly with more oscillation. 

for all n E Z+. This solution, of course, agrees with the solution for the system without 
the artificial periodicity. From equations (2.5) and (3.2), the Wannier functions for a free 
electron can immediately be obtained: 

This Wannier function is localized at x = am and decays hyperbolically with oscillation as 
Ix -am]  is increased. We show the Wannier function @f)(x) for n = 0 and 1 in figure 2. 
In passing, in figure 3 we show the Fourier transform of @,?(x): 

& nx < lkla < (n + 1)n 
= [ O  otherwise. 

~n particular, we note that the support of &@)(k)  is ~ k l <  x /u .  

(3.5) 

3.1. Two-scale relations of the Wannierfuncrions for afree electron 

We can construct the Wannier function for a free electron using any lattice constant. We 
consider the Wannier function @Aa) for lattice constant 2. It is straightforwwd to show 
the following two properties. First, @ia)(x)  and @ ( x )  satisfy 

(3.6) 
The left-hand side denotes the Wannier function (times 4) for a free electron in a one- 
dimensional lattice with lattice constant 2a compressed by a factor 2 towards the origin, 
which is localized at 2um before the compression and at am after the compression. Note 
that @A”)(x) satisfies the normalization condition 

(3.7) 

f i q $ a ) ( 2 x  - k m )  = @f)(x -am) .  

(@?)(. - h m l ) ,  @?)(. - 7 - m ) )  = ~n,,n,~m,,m,. 
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Figurr 3. ?he Fourier transform 
?r Tr li of the Wannier function of the 

- - ( - IL+l )  --n --IL a a + ‘1 nth band for a free electron in a a 
k one dimension. 

Secondly, the inner product between the Wannier functions $,?(x) and @L?(x) does not 
depend on parameter a, namely, we can show 

pmt-k2 for n’=4n 

otherwise 
(3.8) for n T = 4 n + 3  

( @ , : , ( . - a m l ) , ~ f n ) ( . - 2 a m z ) )  = qml-h2 for n ’ = 4 n + 2  

l o  
(0) (a) (@% (. - am,), (. - 2amz))  = qml-h2 for n’ = 4n + 1 

l o  otherwise 

where 

(3.9b) 
for m = 0. 

Here the Parseval identity has been used to derive (3.94 and (3.9b). The sequences (p,,,) 
and {qm} play important roles in the following discussion. 

Considering the orthogonal decomposition of the space LZ@) (see appendix A), and 
using the relation (3.6), we can derive the following two-scale relations of the Wannier 
functions 
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(3.10~) 

m 
@&(x - a m )  = q m t - k , d & . ~ ( k  - a m ] )  (3.106) 

for all m2 E Z. For example, equation (3.10~) denotes that the Wannier function @(x) for 
the 4nth band can be expressed as a linear combination of the Wannier functions for the 211th 
band compressed toward the origin by factor 2 (see figure 4). equations (3.10bH3.104 
have similar meanings. 

m=-m ~~ 

....................... 

......................... 
Figure 4. The two-scale relations between & ) ( x )  and @ ( I )  are shown schematically. 

The inverse transformation of equations (3.10a)-(3.1Od) is given by the decomposition 
relations 

(3.11~) 
m m 

(a) - a m )  = ~ ~ , - ~ ~ ~ ~ ~ + ~ ( x  - 01112) + q ~ , - k , 4 ? , . 2 ~ x  -am21 
mx=-m m=-m 

(3.11b) 

for all m ,  E Z. Here we have used complex conjugates in the coefficients, although [em] 
and { q m ]  are real, to clearly indicate that the decomposition relations (3.11~) and (3.11b) are 
the inverse transformations of two-scale relations (3.100)- (3.104. The coefficients [em) 
and {qm] are elements of a unitary matrix for the inflation transformation which satisfy the 
following orthogonality relations (see also equations (A.gb(A.12) in appendix A). 

(3.1%) 



(3.126) 

(3.12~) 

Equations (3.10a)-(3.10d) and (3.11a), (3.11b) define the renormalization relation of 
the Wannier functions for a free electron with respect to the idation of the unit cell. 
These relations form the main properties of the wavelet analysis as we explain in the next 
subsection. 

3.2. Wannierfunctions for afree electron as wavelets 

From the renormalization relations of the Wannier functions for band index n = 0 and 
n = 1, we find the following important results. For n = 0, equations (3.10a), (3.10b) and 
(3.11~) become 

(3.13a) 

(3.13b) 

(3.14) 

Obviously equations (3.13aH3.14) are. closed relations among @$') and @. The linear 
spans of  these basis functions form subspaces of L'Q) such that 

(3.15) 
(3.16) 

U?) = c~osy(E)(&)(. -am) : m E Z) 

U?' = clos~y~)(&)( .  -am) : m E Z) 

and from equation (A.4) of appendix A the space U?) is shown to be decomposed as 

(3.17) 

On the other hand, we can start this decomposition of the subspace from any a ,  for example, 

When 1 + -w, Up reduces to L2@). we can prove this fact by considenng the Fourier 
(012) = uo) @ u(d uf14) = U?'" U,@/') etc. Therefore = ET=,+, @U, (2"w . U0 0 

transform 

(3.18) 

In the limit of 1 + -w keeping 2'am -+ x ,  the right-hand side is nothing but e-'" since 
the support of #'"(k) becomes infinitely large. Consequently lim (If'') reduces to the 

I+-- 
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space spanned by (eikx; k, x E R}, i.e. L2(R). Considering the limit 1 + cc in (3.18), we 
notice that 

(3.19) 

since the support of ~ ' " ( k )  vanishes in this limit. From the above considerations, Lz(R) 
can be decomposed into a sum of the orthogonal subspaces U:"), 1 E E 

~ 2 @ )  = . . . @ ,y,@'a) @ ~ , @ d  @ up-lQ) e... . (3.20) 

Using the relations (3.6) and (3.7), we can summarize the results shown above in the well 
known form in the multi-resolution analysis as follows: 

L'(R) = C I O S ~ ( R ) ( Z  41 ( (3 .21~)  1/2 (4 2l -m) : m E %, 1 E Z) 

(2W@(2h . -ami), 2W@1"'(2" . - and)  = &,,/J,,,,, 11,  L m l ,  m E Z. 
(3.21b) 

We note that these properties of the Hilbert space or basis functions are the same as 
those for the wavelet analysis. In fact, the Wannier function q$) of the zeroth band for a 
free electron is the scaling function or the father wavelet which generates a multi-resolution 
analysis, {U?")], -1 E E ,  of L2(R). It is also called a sampling function in information 
theory. The Wannier function @f"' of a free electron of the first band is a kind of the 
orthogonal wavelets which generates the complementary subspaces, {U,@") : 1 E E},  of 
the multi-resolution analysis and is known as Littlewood-Paley's mother wavelet [2]. In 
addition, the relation (3.6) and the decomposition property (A.3) in appendix A indicates 
that the Wannier functions &) for n > 2 are the wavelet packets [2, 31, and they are 
generated by the scaling function &) and the wavelet &) using the relations (A.7) and 
(A.8) in appendix A where we put 

pm,-zmr for n'= 2n 
for n' = 2n + 1 
otherwise 

pm,-zmz for n'= 2n + 1 

otherwise. 
for n J = 2 n  

(3.22) 

4. Ro-scale relations in general one-dimensional crystals 

In this section, we consider the two-scale relations in general one-dimensional crystals. 
When the potential energy does not vanish, we cannot follow the procedure in section 3 
which relies on the fact that the potential energy is identically zero. We first note that each 
Brillouin zone of a lattice with lattice constant a is enclosed by Bragg planes which are 
the bisector of a line joining the origin of k-space to a reciprocal lattice point Znnla for 
each n E Z. When we regard the crystal as that of lattice constant 2a, new reciprocal 
lattice points (n(h + l)/a} appear, which generate corresponding Bragg planes, hence 
the Brillouin zones are decomposed into smaller ones (figure 1). Therefore the energy 
band &,?(k), m / a  6 Ikl < n(n + l)/a, of the nth Bloch state are composed of 
the energy band E& ( ), nn/a < Ikl < n(2n + 1)/2a, of the 2nth Bloch state and (21) k 
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n(2n+ 1)/2a < Ikl c n(n+ l ) /a ,  of the (2n+ 1)th Bloch state for the same system 
with the renormalized lattice constant 20. Namely, we find 

From the relation (A.4) in appendix A, we find that the relation between the Bloch 
functions for a lattice of lattice constant a and that for a lattice of renormalized lattice 
constant 2a is given by 

where the Bloch functions for lattice constant a, ($3, satisfy the normalization (2.3). To 
obtain the concrete form of the coefficients R,?(k) and S;)(k), we operate the Hamiltonian 
H ( x :  a), possessing {@::} and [@A?i) as its eigenfunctions, to both sides of (4.2), where 
H ( x ;  a) = H ( x ;  2a). From the relation (4.1). we find 

(4.3) .$)(k)fi@:i(x) = R,?(k)&E)(k)@Ei(x)  + Sf)(k)&F:, (k)@Ly,,k(x). 

Equations (4.1) and (4.3) give immediately the only possible form of R$)(k) and S,$’)(k) 

(4.4) 

(4.5) 

for all n E Z+, where Pa@) and Q.(k) are rectangular pulses with period 2x/a which are 
shown in figure 5. As a result, we obtain the decomposition relation of Bloch functions: 

f i @ $ ! k ( x )  = P,*(k)@i:i(x) + Q:(k)@El.k(x) 

f i @ & , k ( x )  = P , * & ) @ Z ~ . ~ ( X )  + Q:(k)@&k(x). 

(4 .6~)  

(4.6b) 

Although P&) and Q.(k) are real in (4.6~) and (4.6b) we used their complex conjugates 
for later convenience. 

We now proceed to the Wannier function representation of the decomposition relations 
(4.6~) and (4.6b). The decomposition relations of the Bloch function obtained above directly 
lead to that of the Wannier function. By the use of (2.4). equation (4.64 reduces to 

m 2 @g)(x - ami)eikaml = Pi(k) c @ ~ ) ( x  - 2amz)e*”m2 
ml=-m nz=-m 

m 
+QZ(~)  &$(x - 2amz)e’x”mz . (4.7) 

ma=-m 

Since P,*(k) and Q:(k) are 2x/a-periodic functions, they can be expanded in Fourier series 
representations 

(4.8,) 

(4.8b) 
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- 

I 
7 R  711 

2a 2a k 2a 2a 
- 311 - 311 _- __ 

I 
711 711 

2a 2a k 2a 2a 
- 3R - 311 -- __ 

Figure 5. The k dependence of ( U )  Pock) and (b) Q.(k), which are periodic functions of period 
&/a. 

Here the coefficients [ p m }  and {q,,,} are given by (3.94 and (3.9b), and they do not depend 
on lattice constant a. Using equations (4.8~) and (4.8b), equation (4.7) is rewritten as 

(4.94 

Applying the same procedure to (4.6b), we find 

(4.9b) 
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The relations (4.94 and (4.9b) are the decomposition relations of the Wannier functions for 
general one-dimensional lattices. 

It is straightforward to derive the two-scale relations corres onding to (3.10a)-(3.106). 
of the lattice 

with the inflated lattice constant 2a belong to U,'") (see equation (A.4) in appendix A). 
Therefore, noting U,'") is generated by the linear span of @ t ) ( x  -ma), m E Z, we find the 
following two-scale relations of Wannier functions 

K Kaneda and T Odagaki 

We first note that both Wannier functions &")(E U?)) and & + l ( ~  Ph 

(4.10~) 

(4.10b) 

(4.104 

-20 -15 -10 -5 0 5 10 15 20 
X 

I . .  I 
-20 -15 -10 -5 0 5 10 15 20 

X 

-20 -15 -10 -5 0 5 10 15 20 
X 

Figure 6. (a) Wannier function around 
the origin in the lowest band for the 
Kronig-Penney model. ( b )  Wannier 
function around the origin in the lowest 
band for the Kronig-Penney model when 
the lattice constant is taken as Za. ( E )  
Wannier function around the origin in the 
first excited band for the Kronig-Penney 
model when the lattice constant is Wen  
as Za. The real pam are denoted by 
full curves, and the imaginary pans are 
denoted by broken curves. 
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The form of the decomposition relations (4.94 and (4.96) and the two-scale relations 
(4.10a)-(4.10d) are the same as equations (AS), (A.7) and (A.8) in appendix A where 
the coefficients (r:)} and { s , 9  are given by (3.22) with the coefficients (p,) and {qm} 
given in (3.94 and (3.96). 

It should be emphasized that although (4.9a), (4.96) and (4.10a)<4.106) are similar to 
the two-scale relations (3.10uH3.106) for a free electron, there is a significant difference 
between them. This difference originates from the relation (3.6) which is only valid for 
the Wannier functions for a free electron. Equations (3.10aH3.106) and (3.1la), (3.116) 
are relations among the Wannier functions of the same lattice constant a and differently 
scaled x-coordinate. On the other hand, equations (4.9a), (4.9b) and (4.10a)-(4.106) are 
relations among the Wannier functions of the different lattice constants and the same scale 
of x-coordinate. In particular, when n = 0 the Wannier functions of (3.10~) have the same 
form which leads to the two-scale relation of the scaling function in the wavelet analysis. 
However, the Wannier functions in (4.10~) for n = 0, &'(x)  and q$''(x), are not thesame 
function. Hence the Wannier functions of a system with finite potential are not the wavelet 
packets. Nevertheless, we can state that the Wannier functions for a lattice constant 7.u are 
generated by the Wannier functions of the same system with lattice constant a using the 
same linear combinations as those which generate the wavelet packets. 

As an example, we consider the Kronig-Penney model 

(4.11) 

To cmstruct the concrete form of the Wannier function, we follow the standard procedure 
to obtain the energy bands and Bloch functions [I], which is summarized in appendix B. 
Figure 6(a) shows the Wannier function &'((x) in the lowest band, where we solved (B.6) 
numerically setting h2/2M = g = a = 1.0. To obtain this Wannier function, we set the 
k-dependent arbitrary phase factor in the Bloch function so that A ( K ,  k )  in appendix B 
becomes real. In figures 6(b) and (c) we show the lower most two bands of the Wannier 
functions @A"'(x) and @'(x) for the two fold scaled system. They are obtained using the 
relation (2.5) imposing a --f 7.u and related to fi'(x -am) by (4 .94  (4.10~) and (4.106) 
for = 0. As can be seen,  two differently scaled Wannier functions e,$'" and &' have a 
different form to each other, namely, they are not the wavelet packets. 

5. Translational symmetry and two-scale relation 

When one takes a larger cell as the periodic unit of  the^ translational symmetry, some 
operations in the translational symmetry must be discarded. It is, however, clear that the 
energy bands and the Bloch functions should not depend on the choice of the periodic unit 
(see equations (4.6~) and (4.66)). This fact indicates that the Wannier functions based on a 
larger unit cell must be influenced by translational symmetry operations. To emphasize this 
point, we consider a model system of an electron in one dimension whose Hamiltonian is 
given by 
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where 
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b b V + m  f o r - - Q x < -  
2 2 (5.2) [: otherwise 

v(x)  = 

for a b > 0. Namely, potential wells of zero potential with width a - b are placed 
periodically with period a, which are separated by infinitely high potential-barriers with 
width b. We follow the procedure in appendix B. For the potential energy (5.2), we can set 

(5.3) 
in equation (B.6), where K is the wavenumber of the incident particle. Then, from 
equation (B.3) and the normalization condition (2.3), we obtain the energy band and the 
Bloch function 

- iKb t+ = r- = 0 r+ = r- = -e 

(5.4) 

for n E Z+ and the characteristic function xIm,pl(x) is unity in the range oc + b /2  Q x Q 
p-b/2 and zero otherwise. Theprefactor Ja/rt(a - b)  assures the normalization condition 
(2.3). As can be seen in (4.6~) and (4.6b), this Bloch function should not depend on whether 
we view the lattice constant to be a or 2a, if we choose the appropriate Brillouin zones and 
the band index n; namely, 

*gi = *A:j for -2n 4 I ~ I  < -(h + 1) (5.6~) 

(5.66) 
2a 2a 

n: H 

2a 2a 
H n ( 2 4  - (4 

@&+I,& - 9 n . k  for + l) 4 I k l  < -(2n + 2). 

The Wannier function is readily obtained from (2.5) and (5.5) as 

(5.7) 

for m E Z. Note that this Wannier functions is nothing but a state in one potential well. 

renormalized Wannier functions (with lattice constant 2a) such as 
Now we insert ( 5 . 6 ~ )  and (5.6b) into (2.5) (where we put a + 2) to obtain the 
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(5.8b) 

Notice that although these expressions are a superposition of &)(x - am), only one term 
on the right-hand side does not vanish for a given value of x because of (5.7). Since 

&?sin (rr(2n' + I)(ml- 2m2)/2] pml-unl for n' = 2n 
qm,-zmz for n'= 2n + 1 = [  (5.9) 

n(ml - 2 m d  

A s i n  (1((2n'+ I)(ml - 2m2)/2} pm,-h2 for n' = 2n + 1 = (  qm,-h2 for n'= 2n 
- 

n(m1 - 2" 
for n E Z+, ml # Zmz and $10 = l/& and qo = I / &  equations ( 5 . 8 ~ )  and (5.86) are 
consistent with the two-scale relation (4.10a)-(4.104. Hence it should be emphasized that 
these weight factors [pm} and {qm] for a superposition are the consequence of the missing 
mslational symmetry in the inflated lattice. 

Suppose we take two adjacent potential wells as a periodic unit and make the lattice 
constant to be 2a. Since there is an infinite potential barrier between these periodic units, 
we may consider the localized Wannier functions in a periodic unit with width 2a to be 
Wannier functions which are given by 

for all m' E Z, n E Z+. The two degenerated Wannier states (5 .10~)  and (5.10b) are the 
eigenstates of the system composed of only two potential wells located on x = 2"a and 
x = (2" + 1)a with the ener (hnn)2/2Ma2.  Namely @'$)(x) is even with respect to 
the inversion operation, and @ F $ ( x )  is odd. Using equations (5.10~). (5.10b) and (2.4), 
we obtain the Bloch functions for a lattice with the minimal lattice constant is 2a 

for 2ma < x < 2(m + 1)a. (5.11) 

The difference between the Bloch functions (5.5) and (5.11) is evident. Namely, the 
inversion symmetry of $'e) and @'@) in ' (5.10~) and (5.10b) is consistent with the 
translational symmetry with lattice constant 2a, but is not consistent with the translational 
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symmetry with lattice constant a. Hence, equation (5.11) is not the eigenfunction of the 
Hamiltonian (5.1). This paradox is due to the fact that some part of the translational 
symmetry is missing in the lattice which is assumed to have a larger lattice constant. 
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6. Summary 

We have presented a complete analysis of the Bloch functions and the Wannier functions 
in one dimension when the size of the periodic unit is taken as twice as large as the 
primitive cell. The two-scale coefficients (pm} and {q,) or the 2x/a-periodic functions 
P,(k) and Q,(k) which have { p m }  and {qm) as their Fourier series representations give the 
invariant means for the renormalization transformation in one-dimensional periodic systems. 
If the periodic potential energy is finite, then the Wannier functions of the system change 
their forms when one takes a larger unit cell. However, the two-scale coefficients remains 
invariant and they do not depend on the form of the potential energy. It is known that 
although the energy band is folded into smaller Brillouin zone when the lattice constant 
is renormalized, the reciprocal lattice does not change effectively because of the structure 
factor. This property of the energy band is related to the fact that the two-scale coefficients 
do not depend on the potential energy. 

The Wannier functions for a free electron do not change their representations through 
such a renormalization procedure. In other words the Wannier function for a free electron 
plays the role of a generating function of such two-scale coefficients, and they are show 
to have the properties of wavelet analysis. Some properties seen in the Wannier functio r s 
of the first excited band for a free electron are those of the orthogonal wavelets. itself, 
and the free electron Wannier functions of the higher excited levels are generated from the 
zeroth and first band’s Wannier functions using the two-scale coefficients {p , )  and [q,), 
and this algorithm is nothing but the way that the wavelet packets are generated in the 
multi-resolution analysis. 

Appendix A. Two-scale relation of the subspaces in L’m) 

We consider the eigenstates of one electron in a general one-dimensional lattice. The 
following arguement does not assume any particular form to the potential energy. 

For each band index n, let U?’ denote the h e a r  span of Wannier functions [q4f)(. - 
am) : m E Z), namely, 

U;) = c~osp(&+?(. -am)  : m E Z) n E Z+ (A.1) 
where the sign ‘ c l o s y ( ~ ’  denotes the closure of Lz@) space. In the following, we 
argue the decomposition property of L2(R) by the subspace U,?. Obviously U,? can 
also be considered as the subspace of Lz(R) spanned by the set of the Bloch functions 
{@:(.) : an/a < Ikl < x(n + l)/a), namely, 

H x 
a a 

U;) = c~osLqg)(+:J.) : -n 6 I ~ I  < -(n + 1)). (A.2) 

From the well known orthonormality of the Bloch functions, U;) for n E Z+ form 
orthogonal summands of L2(R), namely 

(A.3) 
It is clear that the Brillouin zone for the 2nth and (2n+ 1)th bands of Bloch states with 

period 20 are nZn/20 < Ikl < z(2n + 1)/2a and a(2n + 1)/20 4 Ikl < ~ ( 2 n  + 2)/2a, 

LZ(R) = U p @  U:“’ @U$’@ .. . . 
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respectively. These supports in k space are complements of the support of the nth band of 
Bloch states with period a. Therefore the spaces U?) and U $ z l  are orthogonal summands 
of U?), i.e. U?) is decomposed as 

(A.4) 
Hence, immediately we find the following decomposition relations of the Wannier functions: 

(0) - U'W @ ,y'U Un - 2n &+I  ' 

for all ml E Z, where the coefficients { r i ) ]  and [ s i ) ]  are defined as the inner products of 
the Wannier functions of different lattice constant: 

(#:?)(. - 2aml), R)(. - a m ) )  = [ F-2m2 for n' = 2n + 1 

The inverse transformations of the decomposition relations (A.5) are the two-scale relations: 

(-4.7) 

'n) rm,-2mi for n l =  2n 

(-4.6) 
otherwise. 

m 
#22n (zn) ( x - k m z )  = r$;--*zmi&)(x-aml) 

m=-m 

From the direct calculations of the inner product of the Wannier functions (A.S), (A.7) and 
(A.8). we obtain the following orthogonality relations: 

(A.12) 

for all ml, m2 E Z. These relations for the coefficients ( r i ) ]  and (s;)] are the basis of the 
two-scale transformations between the basis functions of the subspaces U?', lJg)l and 
U:). These coefficients becomes the two-scale coefficients of the wavelet analysis when 
they have the special n-dependence (3.22). In this case the orthogonality relations (A.9)- 
(A.12) allow the coefficients ( r i ) ]  and (sz)} to generate wavelets and wavelet packets. 

("1 (4 * (") (n) * {rmi-2mrm2-2m +~,,--2~~,~--2m} = Jwm 
m=-m 

Appendix B. Single potentialcbarrier problem and Bloch states 

In one-dimensional periodic systems the band structure and the Bloch functions can be 
determined hy the properties of an electron in a single potential harrier u ( x )  [l]. We set the 
support of U@); -b/2 < x < b/2, where b is smaller than the period, -a12 < x < aj2,  of 
the system. Let ?+(K) and r+(K)  be the transmission and reflection coefficients of a particle 
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with the energy fi2K2/2M incident from the left (x < 0) on the single potential-barrier. 
Then in the region 1x1 > b/2, the steady-state wavefunction 
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have the form 

$l(x) = eiKx + r+(K)e-'KX x c -b/2 
= r+(K)eiK' x > b / 2 .  

Similarly, the wavefunction of a particle incident from the right (x > 0) has the form 

$Jx) = r-(K)e-iKX x < -b/2 
- - e-iKx + r-(K)eiKx x > b/2 

(B.1) 

where L ( K )  and r-(K) are the transmission and reflection coefficients of a particle with 
the energy fi2KZ/2M incident from the right on a single barrier. Now the Bloch function 
with crystal momentum k can be expressed as the superposition of 

e.$i(x) = A(K,k)@dx) + B(K, k ) M x )  (B.3) 

~rK.r(x+a)I,=_,,, = e''~K.~(~)[x=-a/z (B.4) 

and er: 
b /2  < 1x1 < a / 2 .  

The substitution of the Bloch conditions 

to equation (B.3) leads to the relations between K and crystal momentum k: 

From the knowledge of t*(K) and r*(K) we can determine the relation between K and 
k, from which we find the energy band, and the relation of A ( K ,  k )  and B(K, k). Using 
the equation (B.3) and normalization condition (2.3), we obtain the Bloch function in the 
region b / 2  < 1x1 < a/2. 
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